Geometric Constants¶
This is about several constants related to the geometry of the network.
n_input¶
Each of the at maximum n_steps
vectors is a vector of MFCC features of a
time-slice of the speech sample. We will make the number of MFCC features
dependent upon the sample rate of the data set. Generically, if the sample rate
is 8kHz we use 13 features. If the sample rate is 16kHz we use 26 features…
We capture the dimension of these vectors, equivalently the number of MFCC
features, in the variable n_input
. By default n_input
is 26.
n_context¶
As previously mentioned, the RNN is not simply fed the MFCC features of a given
time-slice. It is fed, in addition, a context of \(C\) frames on
either side of the frame in question. The number of frames in this context is
captured in the variable n_context
. By default n_context
is 9.
Next we will introduce constants that specify the geometry of some of the non-recurrent layers of the network. We do this by simply specifying the number of units in each of the layers.
n_cell_dim¶
Hence, we are free to choose the dimension of this cell state independent of the
input dimension. We capture the cell state dimension in the variable n_cell_dim
.